

To:

 Learn about Pointers in C++
 Become aware of the basic properties of pointers
 Explore the application of pointers
 Learn about Dynamic Arrays
 Discover how to create and manipulate a dynamic

array
 Learn how to use a dynamic array

 8.1. Introduction to pointers and pointer variables
 8.2. Dynamic Variables
 8.3. Dynamic Arrays
 8.4. Classes and Dynamic Arrays
 8.5. Copy Constructors and Destructors
 8.6. Summary
 8.7. Technical terms
 8.8. Model questions
 8.9. References

Lesson: 8 : Pointers and Dynamic

Objectives:

SSttrruuccttuurree ooff tthhee LLeessssoonn::

Pointers are variables that hold addresses in C and C++.
They provide much power and utility for the programmer
to access and manipulate data in ways not seen in some
other languages. They are also useful for passing
parameters into functions in a manner that allows a
function to modify and return values to the calling routine.
When used incorrectly, they also are a frequent source of
both program bugs.

We can define a variable in C++ to store a memory
address. A pointer in C++ is said to "point to" the
memory address that is stored in it. Also, when defining a
C++ pointer variable, we must specify the type of variable
to which it is pointing. For example, to define a pointer,
which will store a memory address at which exists an int,
we can do the following:

//Sample program for c++ pointer
 main()
{
 int* p;
 // p contains no particular value in this C++
code.
}

 The asterisk in the above specifies that we have a
pointer variable. Let's say we want to define an int variable
and then we want to define a pointer variable, which will
store the memory address of this int:

88..11.. IInnttrroodduuccttiioonn ttoo ppooiinntteerrss aanndd ppooiinntteerr
vvaarriiaabblleess

 //c++ pointer using an int variable

main()
{
 int number(7);
 int* p_number;
 // p_number contains no particular value.
 p_number = &number;
 //Now, p_number in this c++ program
contains the

 //memory address of the variable myval
}

 With &number, & is referred to as "the address-of
operator". The expression &number is of the c++ type
int*. We then store this int* number in our int* variable,
which is p_number. Now, we will actually use this pointer:

//Sample program for c++ pointer

signed main()
{
 int number = 7;
 int* p_number = &number;
 *p_number = 6;
}

 With *p_number = 6, the asterisk is referred to as "the
dereference operator". It turns the expression from an int*
into an int. The statement has the effect of setting the
value of number to 6.

Pointers to Pointers: An int* c++ pointer points to an
int, so an int** points to an int*. The variable p_p_n below
stores a memory address. At that memory address exists a

88..22.. DDyynnaammiicc VVaarriiaabblleess

variable of type int*. This int* variable also stores a
memory address, at which exists an int.

//sample for c++ pointer to pointers .

int main()
{
 int n(7);
 int* p_n = &n;
 int** p_p_n(&p_n);
 int*** p_p_p_n = &p_p_n;
}

In C++, space in memory for variables may be either
statically or dynamically allocated. Statically allocated
objects are those that are not created with the memory
allocator new, that is, they are just the ordinary objects
we use.

int x;
float money;
Employee emp;

These objects are of fixed, known size and the compiler
arranges the required space as it turns source code into an
object program. Statically allocated objects that are of
local scope are put into a memory space known as the
stack. Statically allocated objects of global scope live in the
global address space. The key point is that for these
objects their size is fixed at compile time.

Sometimes we don't know the size of an object until the
program execution. Examples of this are a buffer to hold a

block of text of variable size, or an array with an
undetermined number of elements, You could try to size
the buffer or array to be large enough to hold the worst
case, that is, to be big enough to hold anything we should
encounter. But, there are two problems with this strategy.
First, it consumes memory unnecessarily. Second, we can
never be sure that the object is large enough, no matter
how much memory is statically set aside for our object.
This is a serious problem. The solution to this problem is
dynamic memory allocation.

Allocating Single Objects

During program execution dynamically allocated memory
comes form a pool of memory known as the heap or free
store. It is allocated using the C++ operator "new" and
freed using the operator "delete". To see how this works
let's dynamically allocate some objects of intrinsic data
types.

int *IDpt = new int;
float *theMoney = new float;
char *letter = new char;

The "new" operator returns the address to the start of the
allocated block of memory. This address must be stored in
a pointer. New allocates a block of space of the appropriate
size in the heap for the object. For instance, "new int"
reserves four bytes (on most operating systems), while
"new char" reserves a single byte. Also, notice that the
reserved block of memory is anonymous; it has no
identifier (name). Dynamically allocated memory is
accessed indirectly via a pointer. It is possible for new to
fail. This will be the case if no memory is available. In this
case new throw a "bad_alloc" exception.

Objects dynamically allocated using the above syntax are
uninitialized. They contain whatever random bits happen to

be at their memory location. Before use, a value must be
assigned.

int *IDpt = new int;

*IDpt = 5;

Alternatively, C++ provides a syntax, which initializes the
allocated object via the "new" operator.

int *IDpt = new int(5); //Allocates an int object and

initializes it to value 5.

char *letter = new char('J');

Dynamically allocated objects introduce a new twist; they
must be explicitly deleted when no longer needed by a
program. This is done using the "delete" operator. Delete
releases the memory used by the object. That memory is
then available for reuse.

delete IDpt;

delete theMoney;

delete letter;

Memory for statically allocated variables is reclaimed when
they go out of scope. For instance, when execution enters
a function, the function's statically allocated local variables
are created on the stack. When the function exits, these
variables are popped off the stack and the memory they
occupied is available for reuse. The memory of dynamically
allocated objects is not automatically released. It must be
explicitly released using the "delete" operator. Suppose we
have a function that dynamically allocated some variables

and that we neglect to call delete before exiting that
function.

void fun()
{
 int *pt;
 int ordinaryVariable;

 pt = new int(1024);

 // dynamic variable not deleted.
}
int main()
{
 while (some condition exists) // Pseudo-code
 { fun();
 }
 return 0;
}

"ordinaryVariable" is created on the stack when entering
the function and popped off when exiting the function, so
there is no problem. Likewise for "pt". "pt" is a local
variable in the function. It holds the address of the
dynamically allocated object. When the function exists,
pointer is popped off the stack like any local variable, but
the dynamically allocated object still exists. We just no
longer have a pointer to it. Since we no longer have the
pointer, the memory of the dynamically allocated object
can no longer be released using delete. This is known as a
memory leak. As the program continued to operate, more
and more memory will be lost from the heap (free store).
If the program runs long enough, eventually no memory
will be available, and the program will no longer operate.
Additionally, even if we don't run out of memory, the
reduced pool of available memory affects system
performance. The moral of all this: Be sure to delete.

88..33.. DDyynnaammiicc AArrrraayyss

Every new should be paired with a delete in your code to
avoid memory leaks.

Dynamically Allocating Arrays
Arrays of built-in and user-defined data types may be
dynamically allocated. User-defined data types include
classes.

int *pt = new int[1024];

 //allocates an array of 1024 ints

double *dbs = new double[1000]; /* Allocates an

array of 1000 doubles to hold the amounts of the bills

*/

Observe the difference between:

int *pt = new int[1024];

 //allocates an array of 1024 ints

int *pt = new int(1024);

//allocates a single int with value 1024

A dynamically allocated array is best initialized using a
loop, as follows.

int *list = new int[1024];

for (i = 0; i < 1024; i++)

{

 *list = 52; //Assigns 52 to each element;

 list++;

}

or equivalently

int *list = new int[1024];
for (i = 0; i < 1024; i++)
{
 list[i] = 52; //Assigns 52 to each element;
}

The syntax of the delete operator to delete dynamically
allocated arrays is slightly different from what we saw for
single objects.

delete[] pt;

delete[] dbs;

The square brackets after the delete tell the compiler to
delete a dynamic array rather than a single object.

Dangling Pointers
Take a look at this snippet of code.

int *dptr, *dup;

dptr = new int(10);
dup = dptr;
cout << "The value of dptr is " << *dptr << endl;

delete dup;
*dptr = 5;
cout << "The value of dptr is " << *dptr << endl;

In the above example dptr is a dangling pointer. We have
released the memory of the object whose address dptr
holds and then continued to use it. This problem is that
although the program may run, this section of memory
may be used by another dynamic object allocated after the
delete. The values in that object will be corrupted by the
continued use of dptr. This is a very subtle programming
bug and is very difficult to isolate. To avoid this bug,
always set a pointer to 0, after the delete is called.
Subsequent attempts to use the pointer will result in a
run-time exception. This will immediately allow the bug to
be identified and fixed. The corrected code is given below.

int *dptr;
dptr = new int(10);
cout << "The value of dptr is " << * dptr << endl;

delete dptr;
dptr = 0;
*dptr = 5;
//This statement will cause an run-time exception, now.

cout << "The value of dptr is " << * dptr << endl;

An example program on dynamic arrays is given below.

//Sorts a list of numbers entered at the keyboard.
#include <iostream.h>
#include <stdlib.h>
#include <stddef.h>

typedef int* IntArrayPtr;

void fill_array(int a[], int size);
//Precondition: size is the size of the array a.
//Postcondition: a[0] through a[size-1] have been
//filled with values read from the keyboard.

void sort(int a[], int size);
/*Precondition: size is the size of the array a.
The array elements a[0] through a[size - 1] have values.
Postcondition: The values of a[0] through a[size-1] have
been rearranged so that a[0] <= a[1] <= ... <=
a[size-1].*/

//The following prototypes are to use in the definition of
//sort:

void swap_values(int& v1, int& v2);
//Interchanges the values of v1 and v2.

int index_of_smallest(const int a[], int start_index, int
number_used);
//Precondition: 0 <= start_index < number_used.
//Referenced array elements have values.
//Returns the index i such that a[i] is the smallest of the
values
//a[start_index], a[star_index + 1], ..., a[number_used -
1].

int main()
{
 cout << "This program sorts numbers from lowest to

highest.\n";

 int array_size;
 cout << "How many numbers will be sorted? ";
 cin >> array_size;

 IntArrayPtr a;
 a = new int[array_size];
 if (a == NULL)
 {
 cout << "Error: Insufficient memory.\n";
 exit(1);
 }

 fill_array(a, array_size);
 sort(a, array_size);

 cout << "In sorted order the numbers are:\n";
 for (int index = 0; index < array_size; index++)
 cout << a[index] << " ";
 cout << endl;

 delete [] a;

 return 0;
}

//Uses the library iostream.h:
void fill_array(int a[], int size){
 cout << "Enter " << size << " integers.\n";
 for (int index = 0; index < size; index++)
 cin >> a[index];
}

void sort(int a[], int size)
{

 int index_of_next_smallest;
 for (int index = 0; index < size - 1; index++)
 {//Place the correct value in a[index]:
 index_of_next_smallest =
 index_of_smallest(a, index, size);
 swap_values(a[index], a[index_of_next_smallest]);
 //a[0] <= a[1] <=...<= a[index] are the smallest of
the original array
 //elements. The rest of the elements are in the
remaining positions.
 }
}

void swap_values(int& v1, int& v2)
{
 int temp;
 temp = v1;
 v1 = v2;
 v2 = temp;
}

int index_of_smallest(const int a[], int start_index, int
number_used)
{
 int min = a[start_index],
 index_of_min = start_index;
 for (int index = start_index + 1; index < number_used;
index++)
 if (a[index] < min)
 {
 min = a[index];
 index_of_min = index;
 //min is the smallest of a[start_index] through
a[index]
 }

 return index_of_min;
}

How to avoid Memory leaks and Dangling pointers:

A memory leak happens when you forget to free a block of
memory allocated with the new operator or when you
make it impossible to do so. As a consequence your
application may eventually run out of memory and may
even cause the system to crash. The following are a few
practices to avoid memory leaks and dangling pointers

o Delete a dynamic array before reallocating it

char *string;
string = new char[20];
string = new char[30];
delete[] string;

In the above example, we have two consecutive memory
allocations to the string pointer. This leads to memory
leak. We should have a delete [] statement after the first
allocation and then try to reallocate using a different size
parameter. If we choose not to, the second allocation will
assign a new address to the string pointer while the
previous one will be lost. This makes it impossible to free
the first dynamic variable further on in the code, resulting
in a memory leakage. The corrected code is:

char *string;
string = new char[20];
delete[] string;
string = new char[30];
delete[] string;

o Be sure you have a pointer to each dynamic
variable

What do you think will happen at the end of
this code fragment?

char *first_string = new char[20];
char *second_string = new char[20];
strcpy(first_string, "leak");
second_string = first_string;
strcpy(second_string, first_string);
delete [] second_string;

There is a memory leak in the above example, because
you have lost the address of the dynamic variable
associated with second_string (as a side-effect of the
pointer assignment) so you cannot delete it from the heap
anymore. Thus the last line of code only frees the dynamic
variable associated with first_string, which is not what we
wanted.

The main idea is to try and not lose the addresses of
dynamic variables, so that you will be able to free them,
after their purpose is over.

o look for local pointers

Consider the following function :

Void leak() {
 int k;
 char *cp = new char('E');
 delete cp;
}

Obviously both the k and cp variables are local so they are
allocated on the stack segment. Then when it comes the
time to exit the function they will be freed from memory as
the stack is restored.

The last statement, delete cp; is essential as it frees up
the memory consumed in the function. If this statement is
absent, the memory location pointed to by cp will no
longer be accessible, once the control is returned out of
the function. C++ does not take any responsibility to free
such memory locations. The programmer has to take care
of such things.

o Careful with functions returning dynamic
variables

Let us take a look at the following program.

#include <iostream>

char* tostring(int n) {
 char *S = new char[100];
 char aux;
 int i, j;

 for (i = 0; n; n /= 10, ++i)
 S[i] = n % 10 + '0';
 for (j = 0; j < i / 2; ++j) {
 aux = S[j];
 S[j] = S[i - j - 1];
 S[i - j - 1] = aux;
 }
 S[i] = '\0';

 return S;
}

void main() {
 cout << tostring(23) << tostring(146) << endl;

88..44.. CCllaasssseess aanndd DDyynnaammiicc AArrrraayyss

 char *temp;
 temp = tostring(23); cout << temp; delete []
temp;
 temp = tostring(146); cout << temp; delete []
temp;
}

Obviously the function char* tostring(int n) converts the
integer n to a string, but that is not of our interest right
now. You may have noticed that the string stored in S is
not freed from the heap before exiting the function. We
have just been warned about local pointers though. The
reason for this is that the string should also be available
within the calling function main() as we need to print it out
to screen. To solve this "contradiction" we should first
assign the return value to a temporary pointer variable
inside main(), print it out and be sure to delete [] it right
away, as shown above.

You may ask yourself why use a supplementary pointer
here, why not stick to the previous variant which is also
more compact ? The answer is simple - we may not be
able to delete [] the dynamic variable returned by the
tostring() function call as its address would eventually be
lost if we do not store it somewhere. For example the calls
tostring(23), tostring(146) within the cout statement
return two dynamic variables whose adresses are only
used at printing, they are then lost. This leads to memory
leakage.

 A dynamic array can have a base type, which is a class. A
class can have a member variable, which is a dynamic
array. The techniques of dynamic arrays and classes can
be combined in many ways. The string class is an example

of such combination. The C++ string class contains a
dynamic character array, that can be created to a desired
size and can be initialized with a chosen value. Each object
of the string class then represents a string. Other member
functions to do basic operations on strings can be applied
on these objects. The following C++ code defines and
exercises a string class.

#ifndef STRVAR_H
#define STRVAR_H
#include <iostream.h>

class StringVar
{
public:
 StringVar(int size);
 //Initializes the object so it can accept string values up
to size
 //in length. Sets the value of the object equal to the
empty string.

 StringVar();
 //Initializes the object so it can accept string values of
length 100
 //or less. Sets the value of the object equal to the
empty string.

 StringVar(const char a[]);
 //Precondition: The array a contains characters
terminated with '\0'.
 //Initializes the object so its value is the string stored in
a and
 //so that it can later be set to string values up to
strlen(a) in length

 StringVar(const StringVar& string_object);
 //Copy constructor.

 ~StringVar();

 //Returns all the dynamic memory used by the object to
the heap.

 int length() const;
 //Returns the length of the current string value.

 void input_line(istream& ins);
 //Precondition: If ins is a file input stream, then ins has
 //already been connected to a file.
 //Action: The next text in the input stream ins, up to
'\n', is copied
 //to the calling object. If there is not sufficient room,
then only as
 //much as will fit is copied.

 friend ostream& operator <<(ostream& outs, const
StringVar& the_string);
 //Overloads the << operator
 //so it can be used to output values of type StringVar
 //Precondition: If outs is a file output stream, then outs
 //has already been connected to a file.
private:
 char *value; //pointer to the dynamic array that holds
the string value.
 int max_length; //declared max length of any string
value.
};

#endif //STRVAR_H

#include <iostream.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include "strvar.h"

//Uses stddef and stdlib.h:
StringVar::StringVar(int size)
{
 max_length = size;
 value = new char[max_length + 1];//+1 is for '\0'.
 if (value == NULL)
 {
 cout << "Error: Insufficient memory.\n";
 exit(1);
 }

 value[0] = '\0';
}

//Uses stddef and stdlib.h:
StringVar::StringVar()
{
 max_length = 100;
 value = new char[max_length + 1];//+1 is for '\0'.
 if (value == NULL)
 {
 cout << "Error: Insufficient memory.\n";
 exit(1);
 }

 value[0] = '\0';
}

//Uses string.h, stddef, and stdlib.h:
StringVar::StringVar(const char a[])
{
 max_length = strlen(a);
 value = new char[max_length + 1];//+1 is for '\0'.
 if (value == NULL)
 {
 cout << "Error: Insufficient memory.\n";
 exit(1);
 }

 strcpy(value, a);
}

//Uses string.h, stddef.h, and stdlib.h:
StringVar::StringVar(const StringVar& string_object)
{
 max_length = string_object.length();
 value = new char[max_length + 1];//+1 is for '\0'.
 if (value == NULL)
 {
 cout << "Error: Insufficient memory.\n";
 exit(1);
 }

 strcpy(value, string_object.value);
}

StringVar::~StringVar()
{
 delete [] value;
}

//Uses string.h:
int StringVar::length() const
{
 return strlen(value);
}

//Uses iostream.h:
void StringVar::input_line(istream& ins)
{
 ins.getline(value, max_length + 1);
}

//Uses iostream.h:
ostream& operator <<(ostream& outs,
 const StringVar& the_string)

{
 outs << the_string.value;
 return outs;
}

#include <iostream.h>
#include "strvar.h"

void conversation(int max_name_size);
//Carries on a conversation with the user.

int main()
{
 conversation(30);
 cout << "End of demonstration.\n";
 return 0;
}

// This is only a demonstration function:
void conversation(int max_name_size)
{
 StringVar your_name(max_name_size),
our_name("Borg");

 cout << "What is your name?\n";
 your_name.input_line(cin);
 cout << "We are " << our_name << endl;
 cout << "We will meet again " << your_name << endl;
}

88..55.. CCooppyy CCoonnssttrruuccttoorrss aanndd DDeessttrruuccttoorrss

A copy constructor is a special constructor that takes as its
argument a reference to an object of the same class and
creates a new object that is a copy. By default, the
compiler provides a copy constructor that performs a
member-by-member copy from the original object to the
one being created. This is called a member wise or shallow
copy. Although it may seem to be the desired behavior, in
many cases a shallow copy is not satisfactory. For the
string class, the default behavior of copy constructor is not
is not sufficient for string class, as the data of the object is
kept in a dynamic array. A member-by- member copy can
only copy the address of the dynamic character array of
the string object in to that of destination object. But the
actual requirement is to copy the character sequence.

Hence the string class in the above listing redefines the
default behavior of the copy constructor. In general
notation the copy constructor can be written as A(A&)
where A is the class name. The copy constructor of the
string class is given below.

StringVar::StringVar(const StringVar& string_object)
{
 max_length = string_object.length();
 value = new char[max_length + 1]; //+1 is for '\0'.
 if (value == NULL)
 {
 cout << "Error: Insufficient memory.\n";
 exit(1);
 }
 strcpy(value, string_object.value);
}

The copy constructor should be defined such that the
object being initialized becomes a complete, independent
copy of its argument. So in the above listing, a new
dynamic character array is created, and character
sequence is copied into it from the source array. A copy
constructor is automatically called whenever C++ needs to
make a copy of an object. Particularly in the following
circumstances the copy constructor is called automatically:

1) When a class object is being defined and is initialized
by another object of the same type.

2) When a function returns a value of the class type.
3) Whenever an argument of the class type is supplied

for a call-by-value parameter.

If a class definition involves pointers and dynamically
allocated memory using the new operator, then you need
to include a copy constructor. Other classes do not need a
copy constructor.

Destructors:
A destructor is a member function of a class that is called
automatically when an object of the class goes out of
scope. Destructors are used to eliminate any dynamic
variables that have been created by the object so that the
memory occupied by these dynamic variables is returned
to the heap. The name of a destructor must consist of the
tilde symbol ~ followed by the name of the class. A
destructor takes no arguments and returns no value. The
code given above for the string class also includes
destructor for it. It contains the following lines.

StringVar::~StringVar()
{
 delete [] value;
}

From the above function it is clear that the stringvar
destructor deletes the dynamic character array value.

Pointers are variables that hold addresses in C and C++.
We can define a variable in C++ to store a memory
address. A pointer in C++ is said to "point to" the
memory address that is stored in it. Also, when defining a
C++ pointer variable, we must specify the type of variable
to which it is pointing. For example, to define a pointer,
which will store a memory address at which exists an int,
we can do the following: The other feature of c++ pointers
is that they can be "re-seated", which means that you can
change their value, you can change what they're pointing
to, as in the following: // c++ pointer program for
modifying values/re-seating.

An int* c++ pointer points to an int, so an int** points to
an int. At that memory address exists a variable of type
int*. This int* variable also stores a memory address, at
which exists an int.

Arrays of built-in and user-defined data types may be
dynamically allocated. User-defined data types include
classes. We'll see dynamically allocated arrays of classes in
a latter lesson, so for now let's look at built-in data types.

A copy constructor is a special constructor that takes as its
argument a reference to an object of the same class and
creates a new object that is a copy. By default, the
compiler provides a copy constructor that performs a
member-by-member copy from the original object to the
one being created.

A destructor is a member function of a class that is called
automatically when an object of the class goes out of
scope. Destructors are used to eliminate any dynamic

88..66.. SSuummmmaarryy::

variables that have been created by the object so that the
memory occupied by these dynamic variables is returned
to the heap.

Pointer: The memory address of a variable or object.

Pointer Variable: A variable that contains a memory
address.

Constructor: A constructor is a method that has the same
name as its class.

Destructor: A destructor is a method that has as its name
the class name prefixed by a tilde, ~.

Copy Constructor: A copy constructor is a special
constructor that takes as its argument a reference to an
object of the same class and creates a new object that is a
copy.

Exception: An exception is an error or anomaly that
occurs as a program is executing. It can be due to a lack
of system resources, such as a lack of memory or
unavailability of a file, or raised by program design.

1. What a Pointer? Explain different types of pointers?

2. What is a dynamic array? Explain how to create and

use it?

88..77.. TTeecchhnniiccaall TTeerrmmss::

88..88.. MMooddeell QQuueessttiioonnss::

3. Explain application of dynamic arrays with string

class?

4. What is a copy constructor?

5. How do you delete dynamically allocated variables

from memory in an object?

Problem Solving With C++ by Walter Savitch, Pearson
Education Asia

C++ by Balagurusamy, BPB Publications.

Let Us C++ by Y. Kanitkar.

AUTHOR:

Y. VENKATESWARA RAO,
M.C.A.,
Lecturer,
Dept.Of Computer
Science,
JKC College,
GUNTUR

88..99.. RReeffeerreenncceess::

